If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2+24t=50
We move all terms to the left:
16t^2+24t-(50)=0
a = 16; b = 24; c = -50;
Δ = b2-4ac
Δ = 242-4·16·(-50)
Δ = 3776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3776}=\sqrt{64*59}=\sqrt{64}*\sqrt{59}=8\sqrt{59}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8\sqrt{59}}{2*16}=\frac{-24-8\sqrt{59}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8\sqrt{59}}{2*16}=\frac{-24+8\sqrt{59}}{32} $
| 7(4w+10)÷5=9 | | 10+5h=25 | | 7(4w+10)/5=9 | | v2+15=−4v2+15=−4v2+15=−4v2+15=−4v2+15=−4v2+15=−4v2+15=−4v2+15=−4v2+15=−4 | | 37=4w-15 | | v2+15=−4 | | m.7m−7−6m−16=1+4m | | -6w+(w+3)=-6 | | 5(3w+2)/3=4 | | 4(x–2)=3x+1 | | p/12-9=51 | | 7w-24+10+2w=8+4w-3w+18 | | 1/3(18+12d=6(2d-7) | | 30x+25=40x | | 30x+25=40x | | 6(2l+10)=90 | | 6(2l+10)=90 | | -7(2t+5)=91 | | 30x+25=40x | | 3a+9=-9 | | 2·2x+3=161 | | 1/7x+9=12 | | 6m+7=57 | | −8+38b=−9 | | 25=y+2 | | 8+h/4=72 | | X³-3x+7=0 | | x-1/3x=4/9 | | n4+ 5=9 | | 15=2h×h-3 | | 100x+200=300x+400 | | x-3.8=8.7 |